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Two perfectly different methods are examined as "variational" in [i, 2]. In the first, 
it is the analog of the Dirichlet principle for the Laplace equation setting up the equiva- 
lence of the solution of the boundary-value problem to the minimization of the energy func- 
tional, otherwise called energetic, while the second is the analog of the Lindeloff principle 
setting up the dependence of qualitative characteristics of the solution on changes in the 
domain shape. In principle, the methods of proving the principles are also different; how- 
ever, the variational principles of both kinds are obtained most simply and completely for 
solutions of the Laplace equation. The principles are extended to elliptical systems of equa- 
tions with variable tensor coefficients that should certainly be symmetric and positive-de- 
finite. In physical terminology, this means exclusion of gyrotropic media, conductors with 
Hall conductivity (plasmas or semiconductors in a magnetic field), for example, from con- 
sideration. These media are traditionally excluded also from the formulation of thermodynamic 
principles [3]. 

The author proposed a symmetric formulation of problems for gyrotropic media that permit- 
ted setting up energetic principles for fundamentaland mixed two- and three-dimensional boun- 
dary-value problems [4-7]. 

One of the variational principles of the second kind is also extended to gyrotropic 
media in this paper. The proofs are elementary, but unfortunately limited to two-diMensional 
problems with constant coefficients. Although this particular case corresponds to the La- 
place equation in a traditional formulation, a skew derivative is given on part of the boun- 
dary in the mixed boundary-value problem we are interested in. The operator of such a boun- 
dary-value problem is nonsymmetric; consequently, the variational principles were not formu- 
lated. 

Formulation of the Initial Problem 

Let a conducting body occupy a domain ~. The electrical current density j is related 
by Ohm's law to the electrical field intensity E by the conductivity tensor o: 

i j  = i ~ E  (1)  
GO g0 

(o 0 i s  a c o n s t a n t  whose v a l u e  i s  d e a l t  w i t h  b e l o w ) .  We w i l l  u se  C a r t e s i a n  c o o r d i n a t e s ,  t h e  
components  o f  t h e  m a t r i x  ~ a r e  g i v e n  f u n c t i o n  o f  t h e  c o o r d i n a t e s ,  and ~+ i s  t h e  t r a n s p o s e d  
m a t r i x .  The p o s i t i v i t y  o f  t h e  e n e r g y  l i b e r a t i o n  d u r i n g  p a s s a g e  o f  t h e  e l e c t r i c  c u r r e n t  a s -  
s u r e s  p o s i t i v e - d e f i n i t e n e s s  o f  t h e  symmet r i c  p a r t  o f  ~. Wi thou t  i n t e n d i n g  to  examine i d e a l  
c o n d u c t o r s  o r  i d e a l  i n s u l a t o r s  i n s i d e  fi, we assume t h a t  (~ + ~+/2)  i s  p o s i t i v e - d e f i n i t e  and 
t h a t  t h e  c o e f f i c i e n t s  o f  ~ a r e  f i n i t e  i n s i d e  ~. 

The sharp conservation law and Maxwell equation form a system of equations in the domain 

(i/%) div j = O, rot E = O. (2)  

Le t  t h e  b o u n d a r y  r o f  t h e  domain ~ c o n s i s t  o f  a l t e r n a t i n g  i d e a l  c o n d u c t o r s  and i n s u l a -  
t o r s .  I n  t h e  t w o - d i m e n s i o n a l  c a s e  t h e  p rob lem w i t h  two i n s u l a t o r s  r~ and r 3 and two conduc-  
t o r s  F 2 and r 4 i s  most  i n t e r e s t i n g .  The a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  a r e  

1 . 

~0 in Irl,r~ = 0,  E~ Ir~,r 4 = 0,  (3) 
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where n and x are vector components normal and tangential to the boundary. We assume the 
lengths of all four sections F l, F 2, F 3, and F 4 to be nonzero. 

We consider the external electrical loop connecting the conductors F 2 and F 4 in two par- 
ticular cases. Let an electrical voltage be given between F 2 and F 4 (along the insulator 
F l as is essential if the electrical field will be vortical) 

- -  .f dlE~ = U (4)  
r 1 

or a total current through the conductor F 4 

- ~ dl],,/(~o = [ / (;o ( S )  
i" 4 

As a whole, R = U/I will be the electrical resistance of the conducting body. One of 
the quantities U or I is considered given below while the other is understood to be the nota- 
tion for the integrals (4) or (5). 

The Problem in Symmetric Form 

It is customary to reduce the problem formulated above to a boundary-value problem for 
one second-order elliptic equation by introducing an electrostatic potential or current func- 
tion. The nonsymmetry of o makes the operator of such a boundary-value problem also nonsym- 
metric. The lack of operator symmetry does not permit application of variational methods 
which makes investigation as well as an approximate and numerical solution of the problems 
difficult. A symmetric formulation is proposed in [5] for the two-dimensional mixed boun- 
dary-value problem. 

A set whose elements are pairs of smooth functions ~, $, satisfying the boundary conditions 

Ir 2 = 0, @ I t ,  = 0, T I r  I = T o, T lr~ = 0 (6) 

i s  c o n s i d e r e d  (*o  i s  a n  a r b i t r a r y  n u m b e r ) .  

An energetic scalar product of the elements 

[(tt, v), ( r  T)]=~d!dxdg(gradul+1% % 
. \ r o t v /  I ,_  ~ o ,  ~~+ \ ro t  T ] '  

/ 

(7) 

is introduced, where S is an arbitrary symmetric, positive-definite matrix uniform in ~, and 
rot~ is a vector with the components (SP/3y, -8~/8x). 

The bilinear form (7) is a scalar product since it is symmetric and positive-definite. 
This latter is easily proved if it is noted that in the smooth functions satisfying condi- 
tions (6) 

~ dx dg (grad  (I)) + ro t  ~ = O, 

it is possible, by adding this integral to (7), to change the integrand quadratic form out- 
side the principal diagonal of the block of matrices and thereby make this matrix degenerate, 
and uniform in the domain ~, in addition. But this means that 

[(o, T), (r W)I ~> ~o,~t S J" dx @ ((g~ad O) ~ + (~ot, 'I~):). 

Since the function r equals zero on a section of the boundary, the Friedrichs inequality 
is valid for it: 
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S ~ dxdy(gradO):~const ~ ~dxdgO ~, 

which is ordinarily proved for functions equal to zero on the whole boundary; however, this 
requirement is not necessary [8, (9.13)]. 

Taking into account that (rot ~)2 = ~x 2 + ~y2 = (grad~)2 in the two-dimensional case, 
an analogous inequality is valid for the function ~. An inequality denoting positive-definite 

ness [(~, ~), (~, ~)] ~const~dxdy(~2), is obtained, where the value of const depends 

on the geometry of FI-F ~ and is independent of specific ~, ~. 

The matrix S and constant o 0 should be selected so as to diminish, if possible, the ratio 
of the maximal (and maximal in ~) eigennumber of such a transformed matrix to the minimal. 
The best estimates were successfully obtained in [4] for 

S = ~ - - ~ 0  ) f J+~+~- l '  ~o=Vminkmax'(det(o)/k)~ ~ (8) 

[~ i s  t he  l e a s t  of  t he  eigennumbers  of  the  symmetric ma t r ix  (o + 5+) /2 ] .  

The d i f f e r e n c e  of  t he  min and max from zero  and i n f i n i t y  he re  is  indeed the  s p e c i f i c  
form of  t h e  c o n d i t i o n s  on the  ma t r i x  ~ whi le  smoothness of  t he  c o e f f i c i e n t s  of  ~ i s  r e q u i r e d  
in addition to the traditional approach. 

The named energetic functional is considered: 

W(~, W) = [(~, W),(O, W)I--2UWo, (9) 

Since its quadratic part is positive-definite while the linear is bounded, the values of 
W(~, ~) have a lower bound and a minimizing sequence exists that converges to itself in the 
energetic norm. 

In the case of smoothness of the functions ~, ~ that give the energy functional the mini- 
mal value, the minimality conditions for W(~, ~) agree with the original problem (2)-(4) if 
we use the notation 

J/(~O ~ O0 O0 O0 

E = -- S -~o grad @ § S rot 1F, 

and the Ohm's law (i) is satisfied automatically.. 

In the general case we obtain a generalized solution of the problem in the sense of va- 
lidity of the identity 

ax dy ( - ( g r a d  + (rot E) - -  U,o = 0 

for the arbitrary smooth functions u, v satisfying conditions (6) (the arbitrary number v 0 
is the boundary value of the function v on F~). A generalized solution exists, is unique, 
and possesses finite energy. 

The energy can be written in terms of the original problem 

' jj i §  

if matrix S is selected in conformity with (8). This integral is the total Joulean dissipa- 
tion. If we select S = T(($ + o+)/2o0) -I, where the function T is the absolute temperature 
of the medium, then the entropy production becomes the energy in the domain under considera- 

tion 
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l dz dg --f j+. E. [(r ~), (r = 

An arbitrary symmetric tensor @ (S = ((85 + o+8)/(2o0)) -~) can indeed be selected as 
a quantity inverse to the temperature under the condition that S will be positive definite 

uniformly in ~. Then 

I [ [  dx dg E+~)]. [(r 'It)' (r ~)1 = -%o 

Therefore, the constructed generalized solution has meaning even from the viewpoint of 
thermodynamics. The multiplicity of the formulations associated with the arbitrariness of 
the selection of ~ corresponds to the different temperature distributions in the medium. 

In the case of a current I given in the outer loop (5), the boundary conditions extrac- 
ting the set of functions (~, ~) on which the energy functional should be minimized 

r Ir~ = o, cI) ]r~ = r  ~ [rl = O, ~ [r~ = 0 (lO) 

(~0 is an arbitrary number) change instead of the voltage U (4), and the linear term W(@, 
P) = [(~, P), (~, ~)] - 2I# 0 changes in the energy functional itself. 

Estimate of the Resistance of the Conducting Body 

To obtain the estimate we transform the energy functional. Each pair of functions (~'~ 
~') from set (6) can be transformed into (~', ~') = ~0(@, ~), where (~, ~) satisfy the con- 
ditions already fixed: 

~[r~ = 0 ,  ~ [ r4=O,  ~[rl=l ,  ~[r~ =0" (11) 

Only such normal ized  f u n c t i o n s  a re  u t i l i z e d  below. The energy  f u n c t i o n a l  (9) a c q u i r e s  the  
form W(~, ~) = ~02[(~ ,  ~) ,  (~,  ~)] - 2~0U. I t  i s  e a s i l y  minimized in ~0 fo r  each s p e c i f i c  
p a i r  of  f u n c t i o n s  (~, ~):  

i . e .  , 

~W o = ~ -  = 2 %  [(~, w), (r w)] - 2 u ,  
~"o 

�9 o = u / [ ( $ ,  ~), (o, ~)], w = - u ~ / [ ( $ ,  ~), ($, ~)]. ( i 2 )  

Since U is a given number, the minimality of W corresponds to minimality of the energy (~, ~). 

By virtue of the energy conservation law, the total dissipation in a conducting body 
equals the energy influx from the outer loop, i.e., for the exact solution ~02[(~, ~), (~, 
�9 )] = ( i / o 0 ) u t .  

Together with (12) this yields the expression of the exact value of ~0 in terms of the 
current I, unknown in advance: P0 = I/o0- Now the resistance can be expressed in just the 
terms of the minimal energy (~, ~): 

R = U = min__t [(~, ~), (@, ~)]. (13) 
f % 

Since functions giving the minimal value to the energy figure here, the energy of any 
other (~, P) satisfying (ii) yields the upper bound for Ro Analogously, the energy of any 
functions satisfying the simplified (~0 = i) condition (i0) yields the lower bound of the 
estimate for R. 

Expressions of the form (13) and the corresponding estimates are also valid for the resis 
tance of three-dimensional bodies. However, the specific form of the energy is complicated 
substantially: the function ~ becomes a vector corresponding to the vector equation rot E = 
0(2); the square of the divergence ~,is appended to the energy, which is associated in the 
long run with overdefiniteness of the original three-dimensional system of equations (i) and 
(2). Assignment of the boundary conditions for the vector function ~ even requires prelimi- 
nary construction of a harmonic function on the section of the boundary corresponding to the 
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insulator (this function is determined by the geometry of the boundary and yields a method 
for averaging the electrical field in the insulator during calculation of the voltage bet- 
ween the conductors, which was done in a trivial manner in the two-dimensional case). The 
problem is examined in detail in [7], and the three-dimensional problems with a homogeneous 
boundary (the whole boundary is an insulator or a superconductor) in [6]. 

Resistance of Two-Dimensional Homogeneous Conductors 

For isotropic media with the scalar conductivity ~ in a magnetic field perpendicular 
to the x, y plane, the following kind of conductivity tensor is characteristic: 

o ii -- 

(6 is the Hall parameter proportional to the magnetic-field intensity). We examine below 
precisely such o since for constant coefficients the problem is reduced to this form simply 
by rotations and stretching of the coordinate system. 

For homogeneous media when ~ and 8 are constants, the resistance of the conductor as 
a whole is expressed more simply: 

- + j , .  

(14) 

According to ( 8 ) ,  

~ 0 

were fixed here. 

The term (~x~t - ~y~x) is omitted at once since its integral equals zero by virtue of 
the boundary conditions (ii). Minimization of the energy (14) by functions satisfying the 
boundary conditions (ii) is equivalent, in this case, to solving the boundary-value problem 

A ~  = 0, A1F = 0, ~ ]r2,r 4 = 0, ~g Ir~ = 1, W ]r~ = 0, 

I a~ ~ a ~  r~,r~=0" =0, 13 -- 
a~ ' ~ ~-n r l , r  ~ 

(is) 

Conformal Mapping into a Rectangl@ 

For ~ = 0 the functional and the boundary problem (15) for # and ~ split. 
~ 0. = 0 and A~ = 0, ~ I F  I i, Vlr3 = 0, sW/Snlr=,r. 

The energy is transformed into the conformal capacitance 

We obtain 

C = rain ~ ~ dx db'(W~ -6 ~F,~) (16) 

and 

R = C/o i l .  (17) 

The existence of a mutually one-to-one conformal mapping of the curvilinear quadrangle 
under consideration into a rectangle with correspondence of the four angles is utilized in 
the proof presented below. A mapping with correspondence of three angles exists as for every 
simply connected univalent domain with piecewise-smooth Jordan boundaries [9]. Since the 
capacitance (16) is an invariant of conformal mappings, while the capacitance of a rectangle 

is x0/y 0, we take 

xo = l ,  yo = I/C. (18) 

Then it is easily proved that the fourth angle also goes over into an angle of the rectangle. 
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We now expand the domain ~ in such a manner that a new section of the boundary Fl* lies 
outside ~. We predefine the function ~ obtained during minimization of the energy (13) in 

by ~ = 1 in the added part of the domain. The energy is not changed here. The energy does 
not grow during minimization in the new domain ~*, which means C* ~ C. Now, if we map ~* 
into a rectangle, as was described above, we obtain Y0* ~ Y0 from (18). 

Resistance of Homogeneous Gyrotropic Rectang!es 

For homogeneous rectangles the problem (15) acquires a still more specific form 

AcD=O, A~=O, @1~=o,1=0, ~l~=o=t, ~]~S=yo=O, 

--1/1+~2@u+i3~1~=o,,,o=0, ~r l/t+p3~F~I.~=o,t=O. 

If the number 1/2 is subracted from P, we obtain a problem antisymmetric with respect to the 
line y = Y0/2. Correspondingly, its solution is also antisymmetric, meaning 

~]y=yo/2 = 0, ~l~=u0/2 = i~. (19) 

To analyze the change in resistance during expansion of the rectangle from Y0 to Y0* > 
Y0, we divide the initial rectangle into halves by the line y = y0/2 and insert a strip of 
width Y0* - Y0 in the slit by predefining # = 0, ~ = 1/2 in it. By virtue of (19), the func- 
tions # and �9 remain continuous in the whole new domain and the value of the energy does not 
change. The energy is not increased during minimization. Consequently, the resistance R which 
Fis proportional to the minimal energ 9 (14) does not increase during expansion of the rectangle. 

Formulation of the Variational Principle. Let us combine three assertions: expansion 
of a rectangle into which it is mapped conformally with correspondence of the four angles, 
corresponds to expansion of a curvilinear rectangle; the energy and the resistance (14) there 
by during conformal mappings do not change, and are confirmed directly; the resistance of a rec- 
tangle does not decrease during expansion. We obtain the variational principle: during ex- 
pansion of a conductor its resistance does not grow. 

As was remarked above, upper bounds are found for the resistance during minimization 
of the energy of functions satisfying opposite boundary conditions [(i0) instead of (6)]. 
An increase in the domain outside the conductors F 2 or F~ is conveniently examined in this 
formulation. In the two-dimensional case such a problem differs only by notation from that 
presented; consequently, the second part of the principle is also valid: during elongation 
of a conductor its resistance does not decrease. The position of the angles does not change 
in both cases. 

Conclusions 

In addition to the methodological value in principle, the principle obtained has a prac- 
tical application since it permits replacement of the domain during estimation of the 
resistance of Hall conductors by a simpler one. In particular, it is necessary to perform 
triangulation for a variational-difference realization of the upper bound such that the broken 
lines approximating the boundary with the insulator would pass within the domain while the 
approximating boundary to the ideal conductor would pass outside the domain. In this and 
only in this case, is the value obtained numerically is the true upper bound. For the lower 
bound the broken lines must be constructed in an opposite manner. The efficiency of the pro- 
posed symmetrization for the numerical solution of the problems is demonstrated in [i0, ii]. 

The boundedness of the proofs does not permit asserting the validity of the formulated 
principle for variable coefficients; however, in the two-dimensional cases foundations for 
doubts are not seen. 

Let us note that the proof of the energetic principles in [4-7] is carried out for a 
sufficiently broad circle of problems. Piecewise continuity, uniform boundedness, and uni- 
form posltive-definiteness of its symmetric part were required from the conductivity tensor 
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STABILITY OF THE SURFACE OF A GAS BUBBLE PULSATING IN A LIQUID 

O. V. Voinov and V. V. Perepelkin UDC 541.24:532.5 

This article examines the stability of the surface of a spherical gas bubble undergoing 
nonlinear oscillations. We study the dynamics of small perturbations as a function of the 
wavelength and parameters of the nonlinear bubble pulsations. An approach is developed for 
analyzing the dynamics of the bubble-surface perturbations on the basis of solution of the 
differential equation of stability for a pulsation half-period. The shortwave approximation 
is used to obtain a formula for the increment of the perturbation, and an analogy is estab- 
lished between the stability problem and the problem of the passage of a particle across a 
potential barrier in quantum mechanics. Asymptotic formulas are found for the rate of growth 
of perturbations in the case of large-amplitude pulsations, and a comparison is made with 
exact numerical calculations. It is shown that the rate of growth of perturbations of a pre- 
scribed wavelength is a bounded function with infinite intensification of the pulsations. 
With consideration of capillary forces, it was found that the most rapidly growing perturba- 
tions shift in the shortwave direction as the amplitude of the pulsations intensifies. It 
is shown that Taylor instability is the main reason for rupture of the surface of the pul- 
sating gas bubble. 

The stability of a plane interface between two liquids was first examined by Taylor [i] 
in connection with the problem of bubble dynamics in an underwater explosion. Experiments 
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